Otra característica que pueden tener las funciones es que puedan tener una comportamiento continuo o discontinuo.
LAS FUNCIONES CONTINUAS
Las funciones continuas son aquellas que representan graficas que se pueden dibujar sin alzar el lápiz del plano cartesiano
Matemáticamente las funciones continuas son las funciones que en un punto “x” está definida f(x).
Es decir, en un punto dado x0, existe y está definido f(x0).
LAS FUNCIONES DISCONTINUAS
Las funciones discontinuas son aquellas que representan graficas que para dibujarlas es necesario alzar el lápiz, o de otra forma, son graficas que tienen puntos o segmentos que no tienen ningún valor.
Matemáticamente las funciones discontinuas son las que, en cierto punto x0, no está definido f(x0), o no existe o es de la forma c / 0 ò 0/0.
Ejemplos:
Ejemplos de funciones continuas y funciones discontinuas:
1.- Determina si la siguiente función es continua o discontinua en los siguientes puntos: (3, -2 y -3)
Para x = 3 tenemos:
Por lo tanto, la función es continua en x = 3
Para x = -2 tenemos:
Por lo tanto, la función es continua en x = -2
Para x = -3 tenemos:
Por lo tanto, la función es discontinua en x = -3, debido a que cualquier numero divido entre cero es infinito, es decir, es un valor indeterminado.
Mas ejemplos, ejercicios y preguntas clave de examen, en nuestras guías digitales.
-
Guía UNAM Área 4 2023Oferta Producto rebajado
$600.00$450.00 -
Guía UNAM Área 3 2023Oferta Producto rebajado
$600.00$450.00 -
Guía UNAM Área 2 2023Oferta Producto rebajado
$600.00$450.00 -
Guía UNAM Área 1 2023Oferta Producto rebajado
$600.00$450.00